
A Defect Classification Methodology for Sewer Image Sets
with Convolutional Neural Networks

Dirk Meijera,b,∗, Lisa Scholtenb, Francois Clemensb,c, Arno Knobbea

aLeiden University, Niels Bohrweg 1, 2333CA Leiden, The Netherlands
bDelft University of Technology, Stevinweg 1, 2628CN Delft, The Netherlands

cDeltares, Department of Hydraulic Engineering, P.O. box 177, 2600MH Delft, The Netherlands

Abstract

Sewer pipes are commonly inspected in situ with CCTV equipment. The CCTV footage is then reviewed by human
operators in order to classify defects in the pipes and make a recommendation on possible interventions. This process
is both labor-intensive and error-prone. Other researchers have suggested machine learning techniques to (partially)
automate the human review of this footage, but the automated classifiers are often validated in artifial testing setups,
leading to biased results that do not translate directly to operational impact. In this work, we discuss suitable evaluation
metrics for this specific classification task — most notably ‘specificity at sensitivity’ and ‘precision at recall’ — and the
importance of using a validation setup that includes a realistic ratio of images with defects to images without defects, and
a sufficiently large dataset. We also introduce ‘leave-two-inspections-out’ cross validation, designed to eliminate a data
leakage bias that would otherwise cause an overestimation of classifier performance. We designed a convolutional neural
network (CNN) and applied this validation methodology to automatically detect the twelve most common defect types
in a dataset of over 2 million CCTV images. With this dataset and our validation methodology, our CNN outperforms
the state-of-the-art. Classification performance was highest for intruding and defective connections and lowest for porous
pipes. While the CNN is not capable of fully automated classification at sufficient performance levels, we determined
that if we augment the human operator with the CNN, this may reduce the required human labor by up to 60.5%.

Keywords: Automated Classification, CCTV Inspection, Convolutional Neural Networks, Image Processing, Sewer
Asset Management, Classifier Validation

1. Introduction

Properly operating urban drainage systems are essen-
tial to ensure public health, safety, and productivity in
cities, but not enough is known about the failure mecha-
nisms that lead to decreased performance or loss of func-
tionality [1]. To understand the condition of the system
and to assess which assets need repair or rehabilitation,
inspections are performed. The largest share of the oper-
ation and maintenance cost across the technical assets in
the system is usually spent on the sewer pipes. For their
inspection, CCTV inspection is commonly performed: a
‘pipe inspection vehicle’ is lowered into a manhole, where
it records video footage which is reviewed by trained op-
erators. The operators identify defects and possible indi-
cations of defects in the footage, and assign this a severity
rating between 1 (no intervention necessary) and 5 (imme-
diate intervention necessary).

∗Corresponding Author
Email addresses: meijerdwj@liacs.leidenuniv.nl (Dirk

Meijer), l.scholten@tudelft.nl (Lisa Scholten),
f.h.l.r.clemens@tudelft.nl (Francois Clemens),
a.j.knobbe@liacs.leidenuniv.nl (Arno Knobbe)

One of the major shortcomings of this method is that
these severity ratings and the defect identification prior
to it are highly subjective, and have been shown to differ
not only between operators, but also for the same opera-
tor at different time points [2, 3]. The SewerSense project
[4] aims to solve this shortcoming by automating parts of
the inspection process to, on the one hand objectify the
inspection results, and on the other hand facilitate deci-
sion making in sewer asset management by providing more
accurate information than an arbitrary urgency scale.

In this article, a possible method to automate the in-
spection process is demonstrated and shown to be viable.
While the performance of the method is noteworthy, the
authors consider the most important contribution of this
paper not to be this method itself, but rather the method-
ology used to validate these results and assess their impact
if used in practice.

1.1. Image Classification

Image classification is the primary way in which the
SewerSense project attempts to address the automation of
the inspection process. This classification assumes that we
have training data, consisting of a set of images of CCTV

Preprint submitted to Automation in Construction April 18, 2019

footage, each of which has an assigned label, which in-
dicates whether specific types of defects are present and
visible in the image. The classifier infers a statistical rela-
tion between the images and the labels, which allows it to
make predictions about the labels of images that we don’t
know the true labels for, such as recently recorded images
that still require assessment.

Traditionally, the automated classification of images
was done with extracted image features [5], which were
known to capture information that is less visible in raw
pixel values. Recently, this approach has been mostly re-
placed by convolutional neural networks (CNNs, explained
in more detail is Appendix A) [6]. CNNs employ “end-to-
end” learning: the raw pixel values are used as inputs, and
the CNN learns the feature extractions as well as how these
features relate to the labels. This allows for extracted im-
age features that are more specialized to the task. There
is one main downside to this approach: there are a lot
more parameters to fit, as also the extracted features need
to be inferred from the image data. Two resulting limita-
tions are that a lot more data is required to fit all these
parameters, and hyperparameter1 optimization becomes
more difficult as the hyperparameter search space (how
many filters and of what shape) increases drastically com-
pared to traditional methods.

The impact of the data availability problem can be
lessened by using a network that has been pre-trained on
a different set of images [7], but then we may also reduce
the benefit that the CNN may have in training the con-
volutional filters specifically to the data and the task at
hand. This approach is often favored over a random ini-
tialization of the network parameters to save time [8].

1.2. Classification Result Validation

To assess the performance of a trained classifier, we
need a test set that is independent of the training set. To
use (part of) the same training set as the test set intro-
duces a bias and means we are not measuring how well
the classifier performs, but only how well it can recognize
before-seen data. Since two independent data sets may be
difficult to come by, often a portion of the training set is
set apart to be used as the test set [9]. The training and
test set are not independent in such a scenario and likely
contain the same sampling bias, but it is often the best we
can do.

To assess the performance accurately, some variance in
the samples in the training set is required, which means
many samples are required, and a significant portion of
the training set may have to be set apart. A significant
reduction in size of the training set could itself impact the
performance negatively, leading us to underestimate the
actual performance of the classifier, due to lack of training
data. An often used technique to circumvent this prob-
lem is k-fold cross validation [9]. Instead of setting apart

1Parameters that the algorithm is initialized with, that are not
fitted during the training phase.

a large portion of the training set, the training set is di-
vided into folds, non-overlapping subsets. A single fold is
used as the test set, and the remaining folds are used as
the training set. This process is then repeated until each
fold is used as the test set once, and the performance on
each fold can be averaged to estimate the performance of
the classifier. To practically eliminate the impact of hav-
ing a reduced training set, we can use leave-one-out cross
validation [9], where each fold is exactly 1 sample in size,
and there are as many folds as there are samples in our
training set.

Besides a test set, the performance metrics have to
be defined. The most common performance metric used
for classification is the accuracy, the percentage of cor-
rectly classified samples. However, the performance met-
ric should be chosen based on the task at hand, and we
feel that accuracy is not a good choice for this particular
problem (further discussion on this in section 4). Most
performance metrics can be thought of as some function
of the false positive rate (FPR, or Type I error) and the
false negative rate (FNR, or Type II error). A classifier
can often be tuned after it has been trained, making it
essentially a family of classifiers. In such cases the per-
formance metric is also a function of this tuning, and it
can be worthwhile to use metrics that are independent of
which member of the family of classifiers is used. Examples
of such metrics are the receiver operator characteristic, or
the Pareto-boundary of any combination of metrics [9].

1.3. Related Work

Many researchers have already applied machine learn-
ing techniques to the task of automating sewer inspections.
The validation of such methods is often of less note in such
articles. As actual defect rates are often very low, around
an order of magnitude of 1% of images of frames captured
by CCTV — in our dataset we found 0.8% images with
defects — it is curious that many authors will test their
methods on artificial test sets in which 50% of images con-
tain defects. We feel that such a result might be interesting
in a vacuum, but unless the pipes later classified with the
system have similar extreme defect rates, it gives little to
no indication of the actual ‘real-world performance’ of a
classifier. A relevant selection of research is discussed in
this section.

Chae and Abraham [10] use a (non-convolutional) neu-
ral network to learn various attributes in relation to the
existence and severity of cracks from images of the inner
surface of sewer pipes. Their neural network is trained on
20 images and tested on 13 images, so the actual applica-
bility remains unclear.

Yang and Su [11] compare two SVM approaches and a
neural network, trained on wavelet filter responses of im-
ages. The classifiers were only applied to images contain-
ing defects, and subsequently used to classify what defect
was present in the image. This means no information is
available regarding the false detections in images without
defects.

2

Guo et al. [12] use image registration and the absolute
pixelwise difference between images to classify image re-
gions as defective or healthy. The method is tested on a
dataset consisting of 51 images of defective pipes and 52
images of healthy pipes, with reported accuracy and false
alarm rates.

Halfawy and Hengmeechai [13] present an algorithm
for crack detection in CCTV inspections, based on a Sobel
filter and morphological operations. As the model is based
on expert knowledge, it does not require a large dataset
to train, and it was tested on a dataset with 50 images
containing cracks and 50 images not containing cracks.

Halfawy and Hengmeechai [14] improve on their previ-
ous work, now training an SVM with varying kernels with
HoG features extracted from CCTV images, and report
more meaningful performance metrics such as precision
and AUROC. The experiments are still performed on a
test set that consists of 50% images with defects, so it still
tells us very little of real-world performance.

Kumar et al. [15] are one of the first to use convo-
lutional neural networks to exploit end-to-end learning in
sewer CCTV defect detection. They focus on three differ-
ent defect types and train the network three times, once
for the detection of each defect. They also report the
precision as one of their performance measures and use
a training set consisting of 12,000 images, but their test
sets also consist of 50% images with defects, again limit-
ing their obtained results to such an artificial scenario. In
our work, we reimplemented their suggested convolutional
neural network and performed tests on our dataset, which
more accurately represents a real-world scenario.

Myrans et al. [16] trains an SVM and a random forest
on extracted GIST features from CCTV images. They use
25-fold cross validation and provide the ROC curve along
with the misclassification rates for various defect types,
but work with a dataset that consists of approximately
37% images with defects, which is not representative of a
realistic scenario. In [17] they combine both the SVM and
the random forest on a dataset in which “approximately
half” the images contained defects, and obtain results su-
perior to either individual classifier. Again, the validation
results are not representative of a real-world scenario be-
cause of the high prevalence of defects.

1.4. Contribution

Beyond the previous work by other authors, we have
aimed to provide a mature, rigorous, and detailed method-
ological framework to assist future research. We summa-
rize our contributions as follows:

• We have applied state-of-the-art machine learning
techniques to the problem of sewer CCTV inspection
classification.

• We have used an exceptionally large dataset of over
2.2 million images, taken at high resolution and with-
out human interference.

• We have utilized a multi-label classification approach
that allows different defect types to be detected in
the same images by a single classifier, reducing train-
ing time and allowing features learnt for the classifi-
cation of one class to be utilized in the classification
of another class.

• We have introduced a methodological workflow for
the classification of sewer CCTV images and valida-
tion of this classification, based on:

– Specificity-at-sensitivity and precision-at-recall
quality metrics

– Leave-two-inspections-out Cross Validation and
appropriate metric reduction across inspections,
to prevent data leakage during cross validation

– No rebalancing of the test set

– No human interference in data collection, to
prevent data leakage at time of data collection

• Classes were based on the widely used EN 13508-
2 standard [18] and the performance metrics used
translate directly to operational impact, meaning that
our results should be readily interpretable for prac-
titioners.

2. Data Exploration

A dataset has been kindly provided to us by Dutch
sewer inspection company vandervalk+degroot. The data
has two components: the images themselves, and the ac-
companying inspection reports. The data encompasses 30
inspections from 11 Dutch municipalities, for a total of
2,202,582 images from 3,350 different concrete pipes rang-
ing in diameter between 300 mm and 1000 mm.

2.1. Image data

The images have been collected with the RapidView
IBAK Panoramo® pipeline inspection system [19]. While
the Panoramo software can be used to inspect the pipe in
a virtual 3D environment, for this study we merely used
the same 2D images used to create these 3D environments
as input. The Panoramo system does not record video but
rather still images with a strobe light, spaced 5 cm apart.
This allows for improved image quality, without the need
to stop the cart from moving. The system is equipped
with a front-facing and back-facing camera, each with a
185° wide angle lens. The images from the back-facing
camera are slightly occluded by parts of the cart and the
chain that lowered it into the pipe, so our dataset contains
only the images from the front-facing camera.

The images are 24-bit RGB, 1040× 1040 pixels, JPEG
images. No information was given about the compression
level, but the images range from 19 KiB to 447 KiB. Four
randomly selected sample images are shown in Figure 1.

An important feature of the images recorded by the
Panoramo system is that the images are spatially aligned.

3

Figure 1: Randomly selected sample images from the dataset.

After the device is lowered into the sewer pipe, the oper-
ator aligns the camera with the center of the pipe before
starting the recording. This allows the Panoramo software
to stitch the images together into a three-dimensional, vir-
tual environment, but it also allows us to consider the
images to be of the same modality, allowing a 1-on-1 com-
parison between two images.

As the images from the Panoramo system are meant
for offline processing, the operator does not pan, rotate,
or zoom the camera during the recording, as they might
with other CCTV feeds. This is a very important dis-
tinction, because we feel that being able to automatically
classify images where a human operator has already iso-
lated, centered, and zoomed in on the defects, as is appar-
ently the case in some previous studies, does not achieve
much in terms of “automating classification”. We would
not be able to tell if a classifier trained and tested on such
data actually recognizes the defects, or rather recognizes
the camera rotation, for example, which is indicative of
the human inspector’s attention. To take steps towards
fully automated inspection, we should aim to classify im-
ages that were recorded without human intervention, other
than starting the system.

2.2. Inspection Reports

Besides the images, each of the 30 inspections is ac-
companied by an inspection report, containing all points
of interest along the pipes referenced according to the Eu-
ropean standard coding norm EN 13508-2 [18], as anno-
tated from visual review by human operators. An example
of an entry from the tabular datafile that generated this
report could be:

38.40m BBAC2 @Blick=38.38;91;72;90;0;

This indicates that at 38.40 meters from the start of
the pipe, a defect was found with main code BBA (roots),
characterization C (complex mass of roots), and quantifi-
cation 2 (pipe diameter reduced by ≤ 10%)

From these entries, we can assign contextual labels to
the images. We have selected the twelve most commonly
occurring defects (that are not simply expected landmarks
such as pipe joints, an overview is shown in table 1) and
matched these to specific images, using the location of the
entries. Because we know the Panoramo system’s images
are spaced exactly 5 cm apart, it is a relatively simple task
to determine which entries in the report should be visible
in each image. It’s important to note that the best we can
aim for with such a dataset is to label the images as well
as (and no better than) a human operator would.

The @Blick entry is added by the Panoramo software
and can be used to recreate the exact view in the virtual
environment the operator was looking at when this defect
was recorded. In this research, the @Blick entry was not
used.

In the end, we have a set of roughly 2.5 million im-
ages, and for each image a list of twelve boolean values
(True/False), telling us whether or not that specific defect
is present in the image. In the next section, we will go into
detail on how this data is modelled.

3. Methodology

3.1. Classification

Supervised classification (henceforth simply classifica-
tion) is a machine learning task where the goal is to infer a
relationship between ‘objects’ and ‘labels’ by generalizing
a training set, a collection of such objects for which the
label is known. This generalization can then later be used
to classify objects for which the label is not known.

We consider a dataset X consisting of N real-valued
vectors of equal length:

X = {x1,x2, . . . ,xN}
xi ∈ Rd ∀i ∈ [1, N]

Each of these vectors also has an associated label, yi,
belonging to one of m distinct classes:

Y = {y1,y2, . . . ,yN}
yi ∈ {c1, c2, . . . , cm} ∀i ∈ [1, N]

In our case, each vector xi is an image consisting of
P pixels (treated as real values, for simplicity’s sake, and
flattened to a single dimension), and each label yi is a
boolean vector of length D, with one boolean value for
each defect we distinguish, as noted in Section 2:

cj ∈ {+,−}D ∀j ∈ [1,m]

(where a positive label indicates presence and a nega-
tive label indicates absence of a particular defect in that
particular image.) As such, each image has a true label,

4

a vector of boolean values, which reflects what defects are
visible in that image.

The goal of classification is then to find a function F
that relates the vectors to their label:

F (xi) = yi ∀i ∈ [1, N]

We can state that F (·) should be a function between
the two domains:

F : RP → {+,−}D

In reality, we will have a different function, f(·), which
does not return the real label, but rather an estimation, ŷ.
Finding and improving this f(·) is usually done through
a loss function, a function that is minimized when y = ŷ,
such as the Euclidean distance between the two, known in
this context as the `2-norm:

L(y, ŷ) = ‖y − ŷ‖2

The classifier used in this research is a convolutional
neural network, and f(·) is approximated through back-
propagation, explained in more detail in Appendix A.

3.2. Loss Function for Multi-Label Classification

In a regular classification setting, we differentiate be-
tween different classes and each entry in the dataset is
assigned to a single class. In the case of defect detection
in sewers, this leads to a problem: several defects often
co-occur. Infiltration, for example, almost always has a
cause that is defined as a separate defect, such as a crack.
This co-occurrence can be a result of the definitions used
in the EN 13508-2 guidelines [18], or they might be an
effect of cascading failures [20]. In our dataset there are
17,662 out of 2,202,582 images (0.802%) that contain de-
fects, totalling 21,139 different defects, but 6,494 of these
(30.7%) co-occur with another defect in the same image.
When considering entire pipes, 2,512 out of 3,350 pipes
(75.0%) contain defects, 6,918 defects types in different
pipes are found in total, and 6,171 (89.2%) of these defect
types are found co-occurring with other defect types in the
same pipe.

We distinguish multi-label classification (multiple classes
per object), as opposed to multi-class classification, as that
might also refer to a non-binary classification case, i.e. an
object has a single class, but there are more than two
classes.

As a result of this, we have decided to label the images
with a boolean vector, each of twelve boolean values, rep-
resenting the presence or absence of a particular defect.
This means that as most images do not contain a defect
at all, these will have a vector of all negatives.

Obviously, not all misclassifications should be treated
equally. If we correctly classify the presence or absence
of eleven defects, but misclassify the presence or absence
of the last defect, this is less severe than misclassifying
multiple defects.

For each of the twelve defects we calculate an individual
loss function, namely the cross-entropy [21] between the

actual value for a defect, yc (0 for absence, 1 for presence
in the image), and the predicted value outputted by the
network for that defect, ŷc (a real value in the interval
[0, 1]):

L(y, ŷ) = −
12∑
c=1

yc log ŷc

As written, only false negatives contribute to the cross-
entropy loss, as yc is zero for false positives. This means
that we penalize the classifier for not detecting a defect,
but not for detecting a defect where there is none. To
make sure that the network does not simply output 1 for
all defects, ŷ is commonly normalized so that

∑
c ŷc = 1,

which is called soft-max normalization [22]. Alternatively,
it is also possible to account for false positives by adding
contributions both for y and its complement:

L(y, ŷ) = −
12∑
c=1

yc log ŷc + (1− yc) log(1− ŷc)

This is what we will use, as normalizing ŷ does not
make much sense when we expect defects to co-occur.

3.3. Class Imbalance & Oversampling

Our dataset consists of 3,350 pipes with a total of
2,202,582 images. Of the defects present in these images,
we’ve selected the twelve most common to classify. Table
1 gives an impression of how common these defects are in
the dataset.

Table 1: Defect types and occurrences

Pipes Images

Defect Type
Total:

3,350 2,202,582

Fissure 586 1,442
Surface Damage 1,242 2,507
Intruding Connection 375 1,004
Defective Connection 506 838
Intruding Sealing Material 74 173
Displaced Joint 1,509 4,988
Porous Pipe 117 187
Roots 273 629
Attached Deposits 183 338
Settled Deposits 164 219
Ingress of Soil 536 1,249
Infiltration 1,353 7,565

While every pipe contains at least one defect of some
type in one of its images, only 17,663 images2, roughly
0.8% of all images contain a defect. It should also be noted
that the percentage of pipes that contain a specific defect

2This number is not equal to the sum of the numbers in the
rightmost column of table 1, because defects often co-occur in the
same image, and some images are counted multiple times if we sum
the column.

5

is not the same as the percentage of images that contain
that defect, as a pipe is said to contain a defect if at least
one image from that pipe contains the defect.

The extreme class imbalance of images with and with-
out defects in our dataset means that if we train a clas-
sifier without accounting for the imbalance, it will err on
the side of false negatives, as these are simply more likely.
If we make some number of misclassifications, we expect
these to be distributed the same as the prior probabilities
of the classes, simply put: our set has about 1% defects
and 99% non-defects, so of the errors the classifier will
make 1% will be a false positive and 99% will be a false
negative. It can be easily seen that a false negative is more
costly than a false positive (the former costs labor hours,
the latter might pose a health hazard or incur additional
costs e.g. through property damage or disruption of traf-
fic). This has some important implications for the quality
assessment of a classifier as well, which will be discussed
in section 4.

Two choices have been made to adjust the classifier and
make it more able to handle this imbalance: oversampling
and a class-weighted loss function.

Oversampling is done from a more practical perspec-
tive, to train the CNN we have to load a batch of input
images into memory and the backpropagation step hap-
pens for all images in the batch at the end of each batch.
Because of computational limitations, we found that our
experimental setup could handle batches of about 50 im-
ages at a time. This means that it is extremely likely for
a batch not to contain any defects at all. The gradient of
such a batch can not be used to accurately estimate the
gradient of the entire training set [23]. To remedy this,
each defect in the dataset is added not once but five times
to the training set, to increase the odds of having at least
one defect in every batch.

As oversampling the defects by a factor five brings the
imbalance up from 0.8% to about 4% of the images in the
training set containing a defect, we should still be wary
of training a network with such an imbalance. To shift
the error that the network makes more towards false posi-
tives than false negatives, we weight the cross-entropy loss
function from equation (4.1) as follows:

L(y, ŷ) = −
12∑
c=1

Wyc log ŷc + (1− yc) log(1− ŷc)

Where W is a weight that represents how much more
important false negatives are compared to false positives.
If we consider a false negative to be 100 times more costly
than a false positive, we should set W to 100.

3.4. Overfitting

Overfitting is what happens when the classifier is trained
on the training set so well that it loses generalisability on
other datasets. All data that has been sampled from real
world measurements (such as photographs in our case) is
expected to have some amount of noise in it. This means

that any model or classifier that can describe this data —
with the included noise — to a 100% accuracy has incor-
porated this noise in its model. The model’s performance
on a different dataset (with different noise, perhaps from
different measuring instruments) will be worse than a clas-
sifier that learnt to model the data, but not the included
noise [9].

This danger is exacerbated when the noise in the train-
ing set is systemic, for example through a sampling bias,
as this becomes another pattern the classifier might detect
and learn, when it is in fact noise that will not be present
in future datasets that require classification. Neural net-
works are also more prone to overfitting than a lot of other
classifiers, because of the large number of parameters that
are subject to change when learning from the training data
[24]. To prevent overfitting, we employ two methods: the
use of a validation set and dropout.

The use of a validation set is the more general approach
of the two. Instead of training on all the data in the train-
ing set, we keep a subset of the training set apart, which
is not used to train on. Every so often during the training
phase, we calculate the loss function on this validation set.
At some point the classifier will start overfitting, meaning
the loss function on the training set will keep decreasing,
but the loss function on the validation will either stagnate
or start increasing. At this point we choose to stop the
training and take the classifier as trained up to that point
as the final classifier. We have chosen to calculate the loss
on the validation set after every epoch3 and stop early if
the loss on the validation increased significantly, or hasn’t
decreased for a few epochs in a row.

Dropout is a way to prevent overfitting specifically for
neural networks. The idea is that to prevent a network
that is too specifically catered to the input data, we should
assure some stability with regards to small changes in the
network structure. If the correct classification of a sam-
ple depends on a single specific path through the network,
that would not be stable, as only one of the neurons in that
path has to change some weights for the classification re-
sult to change. To force the network to not rely on a single
path through the network, we randomly disable neurons
in the dense layers during the training step, setting their
output to zero. This forces the network to create a path to
the correct classification result with the still enabled neu-
rons. Since a different set of neurons will be deactivated
for every batch of data, this increases the overall stabil-
ity of the network by ensuring the correct result can be
reached through different paths. As the dropout is dis-
abled after training is complete, all the paths that lead to
correct classification will work together, and small changes
in any one of these paths should not change the end result.

3The number of batches it takes until the entire training set has
been through the backpropagation step once.

6

4. Result Validation

Perhaps as important as obtaining a classifier that is
well-trained on a domain, is knowing the classifier’s bound-
aries. If a classifier predicts some defect, it is important
to know how trustworthy this result is to put it into con-
text before acting on it. To properly assess the quality
of our classifier, we examine several different performance
metrics to discuss their value, and we introduce a specific
type of cross validation to unbias the results further.

4.1. Performance Metrics

As noted in section 1.3, a lot of previous work com-
pletely disregarded the class imbalance when training and
testing their classifier, and instead opt for a more manage-
able 50% split. This approach has a major issue: the test
results are not representative of a real-world scenario, and
only indicative of the quality of the classifier in a general
case, not for this specific classification scenario. Instead,
we require the test set to have a realistic ratio of images
with defects to images without defects, as this means our
results should translate directly to the results we would ob-
tain when applying our classifier on newly obtained data.

Commonly, the classification accuracy is used, which is
the ratio of correctly classified samples out of all samples.
It can be easily seen that this is not a very useful measure
with our extremely imbalanced dataset. We could create
a classifier that classifies every image as not having any
defects, and it would have an accuracy of over 99%, giving
the impression that it is a good classifier, when it is not.

Our classifier outputs real-valued predictions in the in-
terval [0, 1], while the actual labels are always either 0 or
1. This means we have some freedom in choosing a thresh-
old θ, that separates a predicted 0 from a predicted 1. We
write this as:

ŷc =

{
0 if fc(x) < θ

1 if fc(x) ≥ θ
(4.1)

where ŷc is the predicted label for defect c and fc(x) is
the classifier’s real-valued output for image x and defect
c. Setting a specific threshold θ for the classifier’s output
results in each image being a true positive (yc = ŷc = 1),
a true negative (yc = ŷc = 0), a false positive (yc = 0; ŷc =
1), or a false negative (yc = 1; ŷ = 0). TP, TN, FP, and
FN are positive integer numbers, denoting the number of
images ending up in that category.

We define the false positive rate (FPR), true nega-
tive rate (TPR, sometimes specificity), false negative rate
(FNR), and true positive rate (TPR, sometimes recall or
sensitivity) by dividing a quadrant in the confusion matrix
with the row total:

0.0 0.5 1.0
FPR

0.0

0.5

1.0

T
P

R

ROC Curve

Random Guess

AUROC

Figure 2: Example of a Receiver-Operator Characteristic (ROC)
curve. Every point on the red line corresponds to a possible thresh-
old θ, that defines the TPR and FPR. The shaded area shows the
area under the ROC curve (AUROC), and the diagonal line is the
ROC curve one would obtain by randomly guessing the label for each
instance.

FPR =
FP

FP + TN
= 1− TNR (4.2)

TNR =
TN

FP + TN
= 1− FPR (4.3)

FNR =
FN

FN + TP
= 1− TPR (4.4)

TPR =
TP

FN + TP
= 1− FNR (4.5)

These rates hold some significance as they are equiv-
alent to the chances that a classifier will make a certain
error. For example, if FNR = 0.2, this means in practice
that 20% of defects are missed by the classifier.

We have some freedom on how to choose θ, which gives
us a way to balance the false negatives and false positives.
Any increase in θ leads to an increase in FNR and a de-
crease in FPR (and vice versa). If we decide that a false
negative is 20 times as costly as a false positive, we could
set θ at an optimum such that FPR

FNR = 20. The trade-off
leads to the construction of the receiver operator charac-
teristic (ROC) [9], as shown in figure 2. Every value of θ
corresponds to a point in the ROC curve, and it is com-
mon to use the area under the ROC curve (AUROC) as
a measure of classifier performance that is independent of
the threshold θ.

The reason accuracy is not a very useful measure for us,
is that the FPR (and the equivalent TNR) are dominated
by the TN term in this unbalanced classification scenario,
which isn’t very interesting, as it is easy to achieve a very
high TN by classifying everything as negative. As the FPR
is one of the dimensions of the ROC, this leads to the ROC
only having limited usefulness. Instead of the FPR, we use
precision, defined as:

Pr =
TP

TP + FP
(4.6)

Both the FPR and the precision are measures of the num-
ber of type I errors a classifier makes. The difference is
that the FPR is in comparison to the total images without

7

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

F1=0.2

F1=0.4

F1=0.6

F1=0.8

PR Curve

F1-score isocurves

AUPR

Figure 3: Example of a Precision-Recall (PR) curve. Every point
on the red line corresponds to a possible threshold θ, that defines
the precision and recall. The shaded area shows the area under the
PR curve (AUPR), and the grey lines are curves with a constant
F1-score.

defects (“How many of the images without defects did we
label as defects?”), whereas the precision is in comparison
to the images that were labeled as defects (“How many
of the images labeled as defects are false alarms?”). The
former is heavily skewed towards the appearance of a good
performance because of the prevalence of images without
defects, but the latter does not have this issue.

If we now combine precision with recall (TPR), we can
construct a curve analogous to the ROC curve, called the
Precision Recall curve, or PR curve, as shown in figure 3.
The area under the PR curve is more meaningful than the
AUROC and also independent of θ. An example PR curve
is shown in figure 3.

While the areas under these curves provide a metric
independent of θ, they still take all levels of recall into
account, whereas we are likely interested only in higher
levels of recall. To this end, we introduce two more met-
rics: “specificity at sensitivity” and “precision at recall”.
Both these metrics do not require us to manually choose
a value for θ, instead they dictate θ to be chosen such
that recall is at a certain level, and report the specificity
(TNR) or precision at this θ. This is the same as taking
a point on the ROC and PR curves that corresponds to a
particular value on the recall axis, and reading the point
it corresponds to on the complimentary axis.

The authors feel that especially the specificity at sen-
sitivity and precision at recall metrics are useful to put
the results into real-world context: for public health rea-
sons we might be restricted a minimum value for recall
(as a lower value would allow too many defects to slip by
unnoticed and increase the risk), and we simply want to
know how efficient the system is at least at that level. For
both of these metrics, we evaluate at the recall/sensitivity
levels [0.90; 0.95; 0.99], as we are mostly interested in high
recall. An overview of the performance metric we are using
is given in table 2.

4.2. Aggregating performance on pipe level

The previous section outlined performance metrics for
classifying single images, but it is not an uncommon sce-

Table 2: An overview of the performance metrics used

Metric Description

AUROC Area under the ROC curve

AUPR Area under the PR curve

Specificity at
Sensitivity

Percentage of non-defects classified as
defects when we require a minimum
percentage of defects to be detected

Precision at
Recall

Percentage of false alarms among de-
tections when we require a minimum
percentage of defects to be detected

nario to classify entire pipes as a whole for a certain defect.
To achieve this, we aggregate the real and predicted labels
on the images with some aggregation rule, and calculate
the same metrics from table 2 on the aggregated labels.

An obvious choice for an aggregation rule is the max-
imum: This would be analogous to determining whether
any of the images are labeled as a defect, compared to
whether any of the images actually contains a defect. Im-
portantly, this aggregation rule does not depend on the
size of the pipe, like the average value would. A downside
to this rule is that we might actually be detecting a defect
in an image where there is none and missing a defect that
is in another image, but we still count this as a true posi-
tive, because we only care to know if we found the defect
in the correct pipe.

Maximum aggregation performance metrics on pipe level
will be reported alongside performance metrics for single
images.

4.3. Leave-two-inspections-out Cross-validation

To accurately assess performance of a classifier on a
dataset, we might use k-fold cross-validation [9]. The
dataset is divided into folds, non-overlapping subsets that
when put together reform the entire dataset. Instead split-
ting the data into a single training set and test set, we take
one fold to be the testing set and train the classifier on the
remaining k − 1 folds. This process is repeated k times,
until each fold has been used as the test set one time.

The folds are often divided either randomly or strat-
ified, meaning that the classes are divided as equally as
possible among the folds. Because of how our dataset was
sampled, we expect some overlap in construction material
and age within an inspection, which is often performed
within a single geographical neighborhood. In this case a
random or stratified split might lead to data leakage, in-
formation from outside the training set being implicitly
part of the training set: two points in a single pipe might
exhibit the same defect, as they are subject to the same
condition, are of the same build material and year. But
these factors also mean they might appear very similar.
As a result, it might be so that our classifier is simply
classifying the appearance of a pipe, and not the defects
themselves. If we then use random or stratified splitting,
we might overestimate the actual performance.

8

Instead, we introduce “leave-two-inspections-out” cross-
validation. This is inspired by “leave-one-patient-out” cross-
validation, sometimes used for medical data. Since the
data is already categorized into 30 inspections, we use
these same inspections as folds for cross-validation. We
take 28 folds as the training set, 1 fold as the testing set,
and 1 fold as a validation set, to prevent overfitting on the
training set. These folds are rotated 30 times, until each
fold has been used as the training set once, and we have a
prediction for each image. This provides a more realistic
scenario, where the classifier would be used to predict the
presence of defects in a pipe it has never seen before.

A possible downside of this method is that for any given
fold, we likely do not have every defect present in both
the test and validation sets. Since there is no defect that
appears in fewer than three inspections, at the very least
every training set will contain every defect.

4.3.1. Averaging performance metrics across folds

While the leave-two-inspections-out cross-validation
should prevent data leakage and give a more accurate per-
formance indication, it also means we are training 30 dif-
ferent CNNs, and combining the performance results of
these into a single metric is not straightforward. There is
no guarantee that the trained networks have at all simi-
lar weights at any given point or that the outputs of the
networks is similar. As noted in the previous section, the
distribution of defects among folds can also be skewed,
with some inspections containing a lot more or fewer de-
fects than others.

As such, it does not make sense to average the metrics
as calculated on the folds. We could set a single threshold
θ for each defect and fold, but since the outputs of the
different networks could behave very differently, this is also
not desirable.

As we have argued that it is not unlikely for defect
detection systems to be tuned to achieve some minimum
sensitivity/recall, we have decided to construct the ROC
and PR curves for each fold and each defect individually,
and combine the curves for different folds by equating the
sensitivity/recall axis, and combining the values on the
complimentary axis. For the ROC curve, this is called
‘horizontal averaging’ [25], for the PR curve, we might call
it ‘vertical averaging’, as the recall axis is the horizontal
axis, but there is no previous use in literature that we
know of.

It should also be noted that the averages for the speci-
ficity and precision are not calculated identically. Both
are calculated with a weighted average, but the results for
specificity in each fold should be weighted such that the
combined result represents the specificity of the entire set,
and the results for precision should be weighted such that
the combined result represents the precision of the entire
set. In practice, this means that the results are weighted
with the relevant denominator from equation (4.3) or (4.6).
As a result, a fold with no occurrences of a particular de-
fect will have no impact on the combined specificity of

that defect, and a fold with no predicted occurrences of
a particular defect will have no impact on the combined
precision of that defect.

5. Implementation Details

We have implemented two different CNNs, one de-
signed by the authors for this task, and one reimplemen-
tation of the network used in [15] (with the first layer
adapted to our image sizes). This is of course not an
entirely fair comparison, as we failed to reproduce their
entire pipeline, but instead only replicated the network
itself, but it does put our performance into context.

The network topologies are shown in figures 4 and 5.
The network topology of our proposed CNN was designed
through informal experimentation with different layer sizes,
filter sizes, and numbers of layers on a smaller subset of
the dataset.

The CNNs were built and run with a TensorFlow (ver-
sion 1.8.0) [26] and Python (version 3.4.8) [27], running
on a Linux system with sixteen NVIDIA Tesla K80 GPUs
and CUDA (version 9.2.148). Each network was trained
using a single GPU, with several networks (one for each
validation fold) being trained simultaneously on multiple
GPUs. Training a single network took on average roughly
five hours (per fold). Testing the different networks with
each different testing fold took on average roughly 1 hour
(for all folds).

Each of the networks was trained with a batch size
of 50. After every 500 batches, the performance on the
validation fold was assessed. The network stopped training
when the AUROC on the validation fold had not increased
for 25 consecutive assessments, or when the AUROC on
the validation fold decreased by more than 1%, with a
minimum of 1,000 batches processed.

6. Results

In this section we present the results achieved by our
proposed CNN, as well as our reimplementation of the
CNN proposed by [15], on the performance metrics out-
lined in section 4. We also provide an interpretation for
these results and their practical meaning for operators.

Figures B.1, B.2, B.3, and B.4 show the ROC and PR
curves for our proposed CNN for classification in images
and entire pipes. For ease of reading, these figures have
been moved to Appendix B.

Tables 3, 4, 5, and 6 show the specificity (TNR) and
precision at recall (TPR) values of 0.90, 0.95, and 0.99, for
our proposed CNN and our reimplementation of the CNN
proposed by [15].

7. Discussion

Looking at tables 3, 4, 5, and 6, we see that in each
of the shown scenarios, our proposed CNN either outper-
forms [15], or it does not perform significantly worse. Out

9

Table 3: TNR at specific TPR values when classifying single images. Numbers displayed in bold indicate that performance is significantly
better than the performance achieved by the other network, as determined by a paired sample t-test at significance level α = 0.05.

TNR at 0.90 TPR TNR at 0.95 TPR TNR at 0.99 TPR
Defect This work Kumar et al. This work Kumar et al. This work Kumar et al.

Fissure 0.754 0.375 0.683 0.290 0.550 0.208
Surface Damage 0.702 0.240 0.548 0.107 0.291 0.045
Intruding Connection 0.916 0.448 0.809 0.392 0.741 0.370
Defective Connection 0.901 0.553 0.811 0.460 0.703 0.372
Intruding Sealing Material 0.780 0.061 0.731 0.057 0.706 0.057
Displaced Joint 0.691 0.441 0.532 0.306 0.262 0.145
Porous Pipe 0.349 0.207 0.322 0.179 0.307 0.171
Roots 0.728 0.209 0.633 0.166 0.561 0.159
Attached Deposits 0.388 0.142 0.313 0.116 0.281 0.115
Settled Deposits 0.510 0.114 0.459 0.102 0.442 0.097
Ingress of Soil 0.762 0.322 0.670 0.237 0.532 0.180
Infiltration 0.622 0.220 0.486 0.160 0.253 0.092

Table 4: Precision at specific recall values when classifying single images. Numbers displayed in bold indicate that performance is significantly
better than the performance achieved by the other network, as determined by a paired sample t-test at significance level α = 0.05.

Precision at 0.90 Recall Precision at 0.95 Recall Precision at 0.99 Recall
Defect This work Kumar et al. This work Kumar et al. This work Kumar et al.

Fissure 0.036 0.006 0.019 0.004 0.005 0.003
Surface Damage 0.011 0.003 0.005 0.002 0.003 0.002
Intruding Connection 0.071 0.007 0.011 0.005 0.006 0.004
Defective Connection 0.014 0.002 0.008 0.002 0.004 0.001
Intruding Sealing Material 0.002 0.000 0.002 0.000 0.001 0.000
Displaced Joint 0.015 0.006 0.010 0.005 0.005 0.004
Porous Pipe 0.000 0.000 0.000 0.000 0.000 0.000
Roots 0.003 0.001 0.002 0.001 0.002 0.001
Attached Deposits 0.001 0.000 0.001 0.000 0.001 0.001
Settled Deposits 0.001 0.000 0.000 0.000 0.000 0.000
Ingress of Soil 0.008 0.002 0.005 0.002 0.003 0.002
Infiltration 0.024 0.012 0.017 0.012 0.013 0.012

10

Table 5: TNR at specific TPR values when classifying entire pipes. Numbers displayed in bold indicate that performance is significantly
better than the performance achieved by the other network, as determined by a paired sample t-test at significance level α = 0.05.

TNR at 0.90 TPR TNR at 0.95 TPR TNR at 0.99 TPR
Defect This work Kumar et al. This work Kumar et al. This work Kumar et al.

Fissure 0.428 0.357 0.365 0.279 0.306 0.261
Surface Damage 0.250 0.226 0.193 0.155 0.128 0.107
Intruding Connection 0.414 0.250 0.371 0.224 0.354 0.220
Defective Connection 0.230 0.186 0.186 0.147 0.172 0.132
Intruding Sealing Material 0.411 0.406 0.411 0.406 0.411 0.406
Displaced Joint 0.294 0.268 0.219 0.169 0.123 0.085
Porous Pipe 0.363 0.399 0.346 0.377 0.344 0.372
Roots 0.403 0.338 0.338 0.290 0.317 0.267
Attached Deposits 0.518 0.481 0.496 0.454 0.486 0.444
Settled Deposits 0.386 0.305 0.364 0.282 0.363 0.282
Ingress of Soil 0.285 0.315 0.237 0.286 0.209 0.245
Infiltration 0.284 0.298 0.218 0.207 0.141 0.133

Table 6: Precision at specific recall values when classifying entire pipes. Numbers displayed in bold indicate that performance is significantly
better than the performance achieved by the other network, as determined by a paired sample t-test at significance level α = 0.05.

Precision at 0.90 Recall Precision at 0.95 Recall Precision at 0.99 Recall
Defect This work Kumar et al. This work Kumar et al. This work Kumar et al.

Fissure 0.414 0.379 0.393 0.364 0.363 0.358
Surface Damage 0.582 0.589 0.573 0.570 0.557 0.552
Intruding Connection 0.369 0.333 0.360 0.324 0.348 0.315
Defective Connection 0.294 0.276 0.291 0.273 0.285 0.272
Intruding Sealing Material 0.068 0.062 0.068 0.062 0.068 0.062
Displaced Joint 0.600 0.602 0.585 0.582 0.565 0.561
Porous Pipe 0.130 0.137 0.129 0.136 0.129 0.135
Roots 0.208 0.189 0.185 0.184 0.176 0.175
Attached Deposits 0.190 0.196 0.185 0.182 0.183 0.179
Settled Deposits 0.125 0.118 0.117 0.108 0.117 0.109
Ingress of Soil 0.363 0.364 0.348 0.358 0.339 0.335
Infiltration 0.584 0.602 0.579 0.584 0.560 0.563

11

Input Layer
Rescaled to
512x512

Conv. Layer
kernel: 5x5
depth: 32
ELU Activation

Pooling Layer
kernel: 2x2
stride: 2x2 Dense Layer

1024 neurons
ELU Activation
50% Dropout

Output Layer
12 outputs

Fissures

Roots

...

...

...

Conv. Layer
kernel: 5x5
depth: 32
ELU Activation

Pooling Layer
kernel: 2x2
stride: 2x2

Conv. Layer
kernel: 5x5
depth: 32
ELU Activation

Pooling Layer
kernel: 2x2
stride: 2x2

Dense Layer
1024 neurons
ELU Activation
50% Dropout

Dense Layer
1024 neurons
ELU Activation
50% Dropout

Figure 4: Network structure of our proposed CNN.

Input Layer
Rescaled to
256x256 Dense Layer

1024 neurons
ELU Activation
50% Dropout

Output Layer
12 outputs

Fissures

Roots

...

...

...

Conv. Layer
kernel: 5x5
depth: 32
ELU Activation

Pooling Layer
kernel: 2x2
stride: 2x2

Conv. Layer
kernel: 5x5
depth: 32
ELU Activation

Pooling Layer
kernel: 2x2
stride: 2x2

Dense Layer
100 neurons
ELU Activation
50% Dropout

Figure 5: Network structure of the CNN proposed in Kumar et al. [15].

of 144 scenarios, our proposed network wins significantly
81 times. Additionally, it wins 44 times, but not by a sig-
nificant margin, and loses 19 times, but never significantly.

When we take a closer look at the ROC and PR curves
in figures B.1, B.2, B.3, and B.4 in Appendix B, there are
a few observations to be made.

The ROC curves in figure B.1 generally look quite
good, with the exception of those for porous pipes, at-
tached deposits, and settled deposits. The class imbalance
is quite important here: the AUROC does not take into ac-
count that a false positive and false negative are not com-
parable in this context. As noted earlier, we are mostly
interested in the scenario with high true positive rates, as
these are a requirement for any kind of automated sewer
inspection, which means the top portion of each plot is
more important than the bottom portion. It must also be
noted that while both axes go from 0 to 1, the horizon-
tal axis concerns many more images than the vertical axis
does, because of the class imbalance. One interesting fea-
ture of these curves, is that they seem to have a ‘plateau’
near the top. This indicates that a specific threshold ex-
ists where it is no longer advantageous to further increase
the threshold, as this will only increase the false positive
rate, but not the true positive rate. The false positive rate
at this interval (which is approximately equal to 1 minus
the specificity at 99% recall, as noted in table 3) can be
regarded as the best specificity we can achieve for a certain
defect.

The PR curves in figure B.2 paint a different picture:
the PR curves are mostly below an F1-score of 0.2, seem-
ing very unimpressive. Similar to the ROC curves, we are

mostly interested in high recall, i.e. the rightmost portion
of each plot. In this case, the precision seems to be quite
low, but unlike the specificity, the precision axis is scaled
with the prior probability of the defects. We will go into
more detail on how to interpret these precision scores in
the next section, but it should be noted that a small pre-
cision is expected when we have small prior probabilities.

When we observe the ROC and PR curves for classifi-
cation of pipes, they paint a rather different image. The
ROC curves in figure B.1 do not look very good, but it
should be noted that the ‘plateaus’ are again present in a
lot of the curves, which again indicates that there are some
pipes which we are confidently sure do not contain de-
fects. Rather interestingly, among the better ROC curves
are those that underperformed on single-image classifica-
tion: porous pipes, attached deposits, and settled deposits.
This might indicate that some labels were missing in our
test set: if a pipe has these defects at multiple locations
but only a few locations were marked in the inspection
report, we would overestimate the false positives our clas-
sifier finds in single-image classification, but we can be
more sure when deciding whether a pipe has or does not
have this defect.

The PR curves for the classification of pipes looks a
lot better than that of single images, this is because the
class imbalance is much less present on pipe-level. Still the
worst results are obtained for classes that have a low prior
on pipe-level (intruding sealing material, porous pipe, roots,
attached deposits, settled deposits), as expected for the
precision.

12

7.1. Result Interpretation
To put our findings into context, we will take a closer

look at their impact on the day-to-day operation of sewer
inspections aided by our automated system. When looking
at our results superficially, they are easily misinterpreted.
It is important to keep in mind that we are dealing with
a very imbalanced dataset, which makes the precision the
more interesting of these metrics (as described in section
4). Let’s consider the class Fissure in more detail. From
table 1 we can tell that approximately 0.065% of the im-
ages (1,442 out of 2,202,582 images in total) contain a
fissure, which makes for a very unbalanced target. For fis-
sures at 0.90 sensitivity we achieve a specificity of 0.754
and a precision of 0.036 (see tables 3 and 4, top left cell).

If we assume that fissures are randomly distributed,
an unsupported operator would have to inspect 90% of all
images (0.9 × 2,202,582 = 1,982,324 images) to find 90%
of the fissures. Our proposed classifier detects 90% of all
images with fissures with a specificity (TNR) of 75.4%.
This specificity of 75.4% indicates that, of all the images
that do not contain fissures, we identify 75.4% as such, and
the remaining 24.6% are suspected of containing fissures,
meaning they still have to be inspected by an operator.

The precision indicates that 3.6% of all detections are
true positives, while the remaining 96.4% are false alarms.
To detect 90% of all fissures, an operator would have to
inspect all detections the system made: 0.246 × (2,202,582
- 1,442) + 0.9 × 1,442 = 542,778 images. In comparison to
the situation without a classification system, this equates
to a reduction of 72.6%. In an ideal situation, this means
that the time an operator spends on inspecting fissures is
reduced by almost a factor 4. Table 7 lists these reduction
numbers (derived from tables 3 and 4) for all defect types
considered. The reduction of 72.6% for Fissure appears as
the top-left cell. The highest reduction (at 0.90 recall) is
attained for Intruding Connection, with a 90.7% reduction
(a factor 10). Not surprisingly, this defect types scores well
both in the ROC as in the PR plots. It ranks 6th in terms
of frequency of defect type, with 1,004 observed cases.

We can perform the same calculations with the results
from classification on entire pipes, but the interpretation
is a little less clear, as we cannot assume different pipes
take the same amount of time for review; especially pipes
with a lot of defects will be more labor-intensive to inspect.
From table 1 we can tell that approximately 17.5% of pipes
contain fissures (586 out of 3,350 pipes). Let us for this
case assume 99% of all pipes containing fissures need to be
detected, this means 0.99 × 3,350 = 3,317 pipes have to
be inspected for fissures. Our classifier achieves 99% recall
(TPR) with a specificity (TNR) of 30.6% (table 5) and a
precision of 36.6% (table 6). By the same calculations as
above, this means we now have to inspect 0.694 × (3,350
- 586) + 0.99 × 586 = 2499 pipes. This is a reduction of
24.7%. Table 8 shows similar reductions for all the defect
types, for pipes.

In both these tables, we see that intruding and defec-
tive connections are best classified by our CNN and have

Table 7: Reduction of images that need to be reviewed by a human
after inspection with our classifier, expressed in percentage compared
to images that would need to be inspected without our classifier.

Recall/TPR
Defect Type 0.90 0.95 0.99

Fissure 72.6% 66.6% 54.5%
Surface Damage 66.8% 52.4% 28.3%
Intruding Connection 90.7% 79.8% 73.8%
Defective Connection 89.0% 80.1% 70.0%
Intruding Sealing Material 75.5% 71.7% 70.3%
Displaced Joint 65.5% 50.7% 25.4%
Porous Pipe 27.7% 28.7% 30.0%
Roots 69.8% 61.4% 55.6%
Attached Deposits 32.0% 27.7% 27.4%
Settled Deposits 45.5% 43.1% 43.7%
Ingress of Soil 73.5% 65.3% 52.7%
Infiltration 57.8% 45.8% 24.4%

Table 8: Reduction of pipes that need to be reviewed by a human
after inspection with our classifier, expressed in percentage compared
to pipes that would need to be inspected without our classifier.

Recall/TPR
Defect Type 0.90 0.95 0.99

Fissure 30.1% 27.4% 24.7%
Surface Damage 10.5% 9.5% 7.5%
Intruding Connection 31.0% 30.0% 30.9%
Defective Connection 12.2% 12.1% 13.9%
Intruding Sealing Material 33.8% 37.2% 39.7%
Displaced Joint 11.9% 9.8% 6.3%
Porous Pipe 28.3% 30.1% 32.6%
Roots 30.9% 27.8% 28.5%
Attached Deposits 43.9% 44.3% 45.4%
Settled Deposits 30.3% 31.5% 33.9%
Ingress of Soil 17.2% 16.5% 16.9%
Infiltration 12.2% 10.5% 7.9%

the largest reduction rate in images or pipes that still re-
quire human review, while porous pipes are the more diffi-
cult to classify and these have the lowest reduction rates.

Realistically, the defects are not randomly distributed
throughout the image set and operators would not inspect
single images, but rather a sequence of images with a clear
spatial relationship (a 5 cm shift). This means that the
reduction by a factor of 4 is almost certainly an overesti-
mation. On the other hand, we know defects can often co-
occur [20] and this estimation was only for fissures, which
has one of the higher prior probabilities of the defects we
consider. For defects with a lower prior probability, there
is a larger potential for improvement.

It should also be noted that with the reported false neg-
ative probability of about 25% [2] in the labels of our data
set, the actual precision and specificity are likely higher
than we report. For any given defect, there is approxi-
mately a 1 in 4 change that the operator missed it and it
was labeled in our dataset as not being a defect (whereas

13

Table 9: TNR and Precision at specific TPR/Recall values for binary
classification on either single images or entire pipes.

Metric and Recall/TPR
Classification type 0.90 0.95 0.99

TNR for Images 0.649 0.452 0.180
TNR for Pipes 0.372 0.284 0.113
Precision for Images 0.021 0.014 0.009
Precision for Pipes 0.717 0.703 0.668

the probability of a false positive was estimated “in the or-
der of a few percent”). The 1,442 images that are labeled
as fissures, are possible only 75% of all images labeled as
fissures, meaning there would be approximately 480 im-
ages among the images not labeled as fissures.

7.2. Combining Defect Outputs

Because of the co-occurrence of defects, it can be inter-
esting to combine the classifier outputs for different defects
into a single decision: “Does this image/pipe need further
(human) review?”

As discussed in section 3, in our dataset 30.7% of de-
fects in images co-occur with other defects in the same
image and 89.2% of defects in pipes co-occur with other
defects in the same pipe. To treat the problem as a binary
classification problem, we simply take the maximum value
of the true label over the classes (a 1 if at least one defect
is present, a 0 if no defects are present), and the average of
the predicted labels over the classes (a real-valued number
between 0 and 1). This gives us the curves as shown in
figure 6.

For classification on images, reducing this problem to
a binary classification case does not improve things much.
The overall result is approximately equal to the average of
the classification results on individual classes. This is not
unexpected, as the co-occurrence of defects in individual
images is rare.

For classification on pipe level though, the results are
more interesting than a simple averaging. The PR curve
is strictly better than the PR curves of individual defects.
The ROC curve at high TPR is slightly worse than some
individual defects, but the overall AUROC is higher.

Table 9 shows the TNR and Precision at specific Re-
call/TPR values, for comparison with the multi-label clas-
sification results in tables 3, 4, 5, and 6. Using these values
we can again calculate the reduction in images or pipes
that require review to achieve a certain TPR/Recall, as
shown in table 10.

The reductions on pipe level are quite low, this is be-
cause the transition to a binary classification scenario re-
sults in the class imbalance disappearing on pipe-level:
75.0% of pipes contain at least one defect, and fall into
the positive class. This means a high precision is required,
and while precision had increased by combining the defect
types, the reduction has decreased.

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Binary classification on images
AUROC = 0.871

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Binary classification on images
AUPR = 0.068

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Binary classification on pipes
AUROC = 0.713

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Binary classification on pipes
AUPR = 0.788

Figure 6: ROC and PR curves obtained when treating the problem
as a binary classification problem, for image level or pipe level.

Table 10: Reduction of images or pipes that need to be inspected
with our combined binary classifier, expressed in percentage com-
pared to pipes that would need to be inspected without our combined
binary classifier.

Recall/TPR
Classification Type 0.90 0.95 0.99

Images 60.5% 42.0% 17.0%
Pipes 7.6% 6.2% 2.6%

8. Conclusion

In this work we have approached the task of automated
defect detection in sewer image sets as a supervised classifi-
cation task. The focus has been on the validation method-
ology used to interpret the results achieved by a classifier.
While we feel that there is a lot of potential for future
improvement of classifiers trained for this task, with the
data and computational resources available, the proposed
convolutional neural network performed reasonably well.

While our proposed classifier does not perform well
enough for fully autonomous classification, it can be used
to significantly reduce the amount of images that require
human review by eliminating images which are highly un-
likely to contain defects according to the classifier. We
estimate the amount of images that require human review
can be reduced by 60.5%, given that detecting 90% of all
defects is sufficient.

We compared the results of our proposed classifier to
that of Kumar et al., [15] and our proposed classifier out-
performs their proposed classifier, but we did not imple-
ment their classification pipeline beyond the network struc-
ture, such as for example, the oversampling outlined in

14

their work. Our dataset also differs significantly from
theirs, as noted in section 2, no human inspector has changed
the camera settings during the inspection, as is common
with other CCTV inspection datasets.

The primary topic of this work was the validation
methodology. We have discussed our reasons for choos-
ing the “specificity at sensitivity” and “precision at re-
call” metrics for this specific task in section 4: these give
us easily interpretable measures of the possible improved
efficiency at realistic scenarios. We have also explained
why “leave-two-inspections-out cross validation” is an ap-
propriate way to prevent data leakage, and applied this
technique in our experiments. These methods provide us
with less biased and more easily interpretable results.

8.1. Future Work

Not all information in the inspection reports was used
to its full potential and the authors feel that using the in-
formation on where in an image a defect is visible (with a
classifier capable of processing this information of course)
could lead to further performance improvement. Addi-
tionally, the use of other types of sensors, either already
present on or easily added to the pipe inspection vehicle,
may prove to be useful for further improvement.

Since we know there are undetected defects in our
dataset [2], it would be an interesting experiment to see
if a classifier trained on data where these are unlabeled,
is still able to find these defects in its own training set.
To achieve this, the false positive detections would have
to be re-classified by a human operator. Hopefully, this
would indicate that the classifier detected defects that we
thought were false positives, but were in fact true positives.
Unfortunately, this is beyond the scope of this work.

Acknowledgements

The authors would like to thank vandervalk+degroot
for kindly providing us with the dataset.

This work is part of the Cooperation Programme TISCA
(Technology Innovation for Sewer Condition Assessment)
with project number 15343, which is (partly) financed by
NWO domain TTW (the domain applied and Engineering
Sciences of the Netherlands Organisation for Scientific Re-
search), the RIONED Foundation, STOWA (Foundation
for Applied Water Research) and the Knowledge Program
Urban Drainage (KPUD).

References

[1] N. Stanić, J. G. Langeveld, F. H. Clemens, HAZard and
OPerability (HAZOP) analysis for identification of informa-
tion requirements for sewer asset management, Structure and
Infrastructure Engineering 10 (11) (2014) 1345–1356, doi:
10.1080/15732479.2013.807845.

[2] J. Dirksen, F. Clemens, H. Korving, F. Cherqui, P. Le Gauf-
fre, T. Ertl, H. Plihal, K. Müller, C. Snaterse, The
consistency of visual sewer inspection data, Structure
and Infrastructure Engineering 9 (3) (2013) 214–228, doi:
10.1080/15732479.2010.541265.

[3] R. Wirahadikusumah, D. Abraham, T. Iseley, Challeng-
ing issues in modeling deterioration of combined sewers,
Journal of Infrastructure Systems 7 (2) (2001) 77–84, doi:
10.1061/(ASCE)1076-0342(2001)7:2(77).

[4] TISCA programme funded by NWO-TTW, SewerSense –
Multi-Sensor Condition Assessment for Sewer Asset Manage-
ment, URL https://www.nwo.nl/onderzoek-en-resultaten/

onderzoeksprojecten/i/77/27077.html, accessed: 2019-03-25,
2016-2020.

[5] R. Szeliski, Computer Vision: Algorithms and Applications,
Springer-Verlag, Berlin, Heidelberg, 1st edn., ISBN 1848829345,
9781848829343, 2010.

[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C.
Berg, F. Li, ImageNet Large Scale Visual Recognition Chal-
lenge, Computing Research Repository abs/1409.0575, URL
http://arxiv.org/abs/1409.0575, accessed: 2018-08-13.

[7] S. Hoo-Chang, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues,
J. Yao, D. Mollura, R. M. Summers, Deep convolutional
neural networks for computer-aided detection: CNN archi-
tectures, dataset characteristics and transfer learning, IEEE
transactions on medical imaging 35 (5) (2016) 1285, doi:
10.1109/TMI.2016.2528162.

[8] M. Oquab, L. Bottou, I. Laptev, J. Sivic, Learning and
transferring mid-level image representations using convolutional
neural networks, in: Proceedings of the IEEE conference
on computer vision and pattern recognition, 1717–1724, doi:
10.1109/CVPR.2014.222, 2014.

[9] C. M. Bishop, Pattern Recognition and Machine Learning (In-
formation Science and Statistics), Springer-Verlag, Berlin, Hei-
delberg, ISBN 0387310738, 2006.

[10] M. J. Chae, D. M. Abraham, Neuro-fuzzy approaches for
sanitary sewer pipeline condition assessment, Journal of
Computing in Civil Engineering 15 (1) (2001) 4–14, doi:
10.1061/(ASCE)0887-3801(2001)15:1(4).

[11] M.-D. Yang, T.-C. Su, Automated diagnosis of sewer pipe
defects based on machine learning approaches, Expert Sys-
tems with Applications 35 (3) (2008) 1327–1337, doi:
10.1016/j.eswa.2007.08.013.

[12] W. Guo, L. Soibelman, J. Garrett Jr, Automated defect de-
tection for sewer pipeline inspection and condition assess-
ment, Automation in Construction 18 (5) (2009) 587–596, doi:
10.1016/j.autcon.2008.12.003.

[13] M. R. Halfawy, J. Hengmeechai, Efficient algorithm for crack
detection in sewer images from closed-circuit television inspec-
tions, Journal of Infrastructure Systems 20 (2) (2013) 04013014,
doi:10.1061/(ASCE)IS.1943-555X.0000161.

[14] M. R. Halfawy, J. Hengmeechai, Automated defect detection
in sewer closed circuit television images using histograms of
oriented gradients and support vector machine, Automation in
Construction 38 (2014) 1–13, doi:10.1016/j.autcon.2013.10.012.

[15] S. S. Kumar, D. M. Abraham, M. R. Jahanshahi, T. Iseley,
J. Starr, Automated defect classification in sewer closed cir-
cuit television inspections using deep convolutional neural net-
works, Automation in Construction 91 (2018) 273–283, doi:
10.1016/j.autcon.2018.03.028.

[16] J. Myrans, R. Everson, Z. Kapelan, Automated detec-
tion of faults in sewers using CCTV image sequences,
Automation in Construction 95 (2018) 64–71, doi:
10.1016/j.autcon.2018.08.005.

[17] J. Myrans, Z. Kapelan, R. Everson, Combining classifiers to
detect faults in wastewater networks, Water Science and Tech-
nology 77 (9) (2018) 2184–2189, doi:10.2166/wst.2018.131.

[18] CEN, EN 13508-2: Condition of drain and sewer systems out-
side buildings, Part 2: Visual inspection coding system, Euro-
pean Norms, 2003.

[19] PANORAMO® 3D Optical Pipeline Scanner,
http://www.rapidview.com/panoramo pipeline.html, date
of access: 2018-12-05, 2015.

[20] R. Sitzenfrei, M. Mair, M. Möderl, W. Rauch, Cascade vulnera-
bility for risk analysis of water infrastructure, Water Science and

15

Technology 64 (9) (2011) 1885–1891, doi:10.2166/wst.2011.813.
[21] J. Shore, R. Johnson, Axiomatic derivation of the principle of

maximum entropy and the principle of minimum cross-entropy,
IEEE Transactions on Information Theory 26 (1) (1980) 26–37,
doi:10.1109/TIT.1980.1056144.

[22] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learn-
ing, vol. 1, MIT press Cambridge, ISBN 9780262035613, 2016.

[23] Y. Bengio, Practical recommendations for gradient-based train-
ing of deep architectures, in: Neural networks: Tricks of
the trade, Springer, 437–478, doi:10.1007/978-3-642-35289-8 26,
2012.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
R. Salakhutdinov, Dropout: a simple way to prevent neu-
ral networks from overfitting, The Journal of Machine Learn-
ing Research 15 (1) (2014) 1929–1958, ISSN 1532-4435,
URL http://dl.acm.org/citation.cfm?id=2627435.2670313,
accessed: 2019-03-25.

[25] L. A. C. Millard, M. Kull, P. A. Flach, Rate-Oriented Point-
Wise Confidence Bounds for ROC Curves, in: T. Calders, F. Es-
posito, E. Hüllermeier, R. Meo (Eds.), Machine Learning and
Knowledge Discovery in Databases, Springer Berlin Heidelberg,
Berlin, Heidelberg, ISBN 978-3-662-44851-9, 404–421, 2014.

[26] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems, URL
https://www.tensorflow.org/, accessed: 2018-08-15, 2015.

[27] G. v. Rossum, Python tutorial, technical report CS-
R9526, https://ir.cwi.nl/pub/5007/05007D.pdf, date of ac-
cess: 2019-03-25, 1995.

[28] D. H. Wolpert, W. G. Macready, No free lunch theorems for
optimization, IEEE Transactions on Evolutionary Computation
1 (1) (1997) 67–82, doi:10.1109/4235.585893.

Appendix A. Convolutional Neural Networks

Neural networks are a type of classification algorithm
modelled after the way synapses in the human brain acti-
vate and pass information along [22]. Convolutional neural
networks are a classification algorithm that has been show
to work particularly well with image data [5]. This section
will explain them into as much detail is required for the
context of our work.

Appendix A.1. Rosenblatt’s Perceptron

Neural networks are composed of neurons, smaller ele-
ments that perform a simple function. The network itself
performs functions much more complicated than the neu-
rons are capable of. The simplest neuron is Rosenblatt’s
perceptron [22]. A perceptron has inputs, weights, a bias,
and an activation function. Each input is multiplied with
its assigned weight, and all are added together with the
bias. The single scalar resulting from this operation is
passed through the activation function, which can be any
function, but is usually a non-linear non-decreasing func-
tion [9]. (The reason it is non-linear is that if it were
linear, the network itself would learn a linear function in
the inputs, which means the network would be limited to
a function no more complex than the neurons themselves.)

Traditionally the step function was used, sigmoidal func-
tions or piecewise linear functions are also common [22].

The perceptron itself is a neural network, and can be
employed as a classifier as defined in section 3.1, by using
it as a function to describe a relationship between data
and labels. In short:

f(x) = ŷ = φ

(
w0 +

∑
i

xiwi

)
(A.1)

where xi are the inputs, wi are the weights, w0 is the bias,
φ(·) is the activation function, and ŷ is the output.

The weights and bias are initialized to random values,
which means its output ŷ is initially unlikely to resemble
its target y much at all. The perceptron is trained through
an iterative process called backpropagation, which brings
the output ŷ closer to the target y with every iteration, by
changing the weights and bias by slight increments.

We feed a single object data x into the perceptron,
which returns output data ŷ. We then compare ŷ to the
expected output y with the loss function, and determine
the derivative of the loss with regards to ŷ. We use the dif-
ferentiation chain ruleto calculate the derivative of the loss
with respect to each weight. A gradient step towards min-
imizing the loss is calculated by multiplying each weight’s
derivative by a (typically small) learning rate α and the
weights are adjusted. This is called the backpropagation
step [22].

After sufficiently many iterations of the backpropaga-
tion process, the perceptron will have converged to a func-
tion that minimizes the loss function for the data it was
trained on.

To make a slightly more complex neural network, ca-
pable of learning more complex relations between input
and output, we can chain multiple perceptrons together to
create the multi-layer perceptron [22]. The idea is to have
several layers, with each layer containing some number of
perceptrons. The first layer has the data we want to learn
from as its input, and each perceptron processes this data
in parallel, each giving a single scalar as output. The per-
ceptrons in the next layer then take these outputs from the
first layer as inputs, applying their weights, bias, and ac-
tivation function as if these were regular inputs, et cetera
for the consequent layers. The final layer has as many
neurons as the dimensionality of the output y, which we
have called D in section 3. Such a network with a sin-
gle direction between the layers (i.e. no loops) is called
a feed-forward neural network. The backpropagation pro-
cess still works the same way, except that the gradients
require more complex calculations with each layer added.
This way, adding additional layers allows us to model more
complex functions by adding the same elementary neurons.
An illustration is shown in figure A.1.

In this work we will be using the exponential linear
unit, or ELU, as activation function for all neurons except
in the output layer, defined as:

16

x1
x2
x3
.
.
.
xd

ŷ1
ŷ2
ŷ3
.
.
.
ŷD

 Input Hidden Output
 Layer Layers Layer

Figure A.1: An illustration of a multi-layer perceptron with 2 hidden
layers.

φ(x) =

{
ex if x ≤ 0

x+ 1 if x > 0
(A.2)

The layers of neurons described in this section are called
dense or fully-connected layers, as each neuron in a layer is
connected to each neuron in the next layer. To construct
a convolutional neural network, two additional layer types
are required: the convolutional layer, a layer in which per-
ceptrons have limited connections with the previous and
next layers, and the pooling layer, a layer in which the neu-
rons also have limited connections, but more importantly,
the neurons perform a significantly different function from
perceptrons.

Appendix A.2. Convolutional layers

In signal processing theory it is common to apply fil-
ters to signals through the use of a convolution operation.
In the case of images, these filters can be used to smooth
or sharpen certain patterns in images, like edges, corners,
or textures. Filter are applied through the process of con-
volution, where a filter is moved across the image, and at
each position the “overlap” between the image and the
filter is calculated.

Discrete4 convolution in two dimensions is a mathe-
matical operation defined as:

I(x, y) ∗ k(x, y) =

∞∑
u=−∞

∞∑
v=−∞

I(u, v) · k(x− u, y − v)

(A.3)

In practice we might smooth image I(x, y) by convolv-
ing it with a Gaussian kernel k(x, y). It should be noted
that while convolution is defined on an infinite domain, in
practice both the image and the kernel will be non-zero
only within limited domains and the convolution can be
performed by summing only over those domains.

We can simplify the perceptron somewhat to simulate
this function. The advantage here is that we can use the

4As opposed to continuous convolution, which is defined for con-
tinuous signals. Our signals are images, consisting of pixels at dis-
crete locations, and as such continuous convolution is beyond the
scope of this article.

backpropagation process to learn image filters, instead of
having to design the filters based on what structure we
expect the images to contain.

A simple convolutional layer consists of as many neu-
rons as the previous layer in the network, but neurons are
connected only to neurons in the previous layer that sur-
round the neuron in the same location. In a one-dimensional
setting, this would mean that neuron ni in the convo-
lutional layer receives as input the output from neurons
ni−s to ni+s in the previous layer. We call 2s+ 1 the filter
size, as each neuron in the convolutional layer has 2s + 1
inputs. In a higher-dimensional setting (such as our two-
dimensional images), the neighborhood around neuron ni
that is connected to ni in the next layer extends in all
dimensions.

Additionally, each neuron in the convolutional layer
has the same weights, just different connections. This is
called weight sharing [22], and it results in an equivalent
of the convolution operation performed by the network,
as each neuron applies the same filter, but at a different
location in the image.

Three additional hyperparameters are used to define
a convolutional layer, the stride, the depth, and the edge
condition.

The stride, or step size, incorporates a subsampling
mechanism into the layer, if a stride of x is chosen in a one-
dimensional setting, the convolutional layer contains N/x
neurons, where N is the neurons in the previous layer. In
other words, (x−1)/x neurons are discarded. The reasons
one might do this, is that if neither the kernel, nor the im-
age, consist of white noise, adjacent samples in the result
will be highly correlated, and we can reduce the neurons
in the layer (and with it the computational requirements
of training the network) without losing any information
present in the input data. In higher-dimensional settings,
the stride has as many dimensions because it can be de-
fined for every dimension individually.5

The depth of a convolutional layer determines how
many filters are applied in parallel. With a depth of 1, ev-
ery neuron is just a perceptron with limited connections,
as mentioned earlier in this section. However, when the
depth increases, each neuron becomes a collection of these
limited perceptrons, and the output of the neuron is sim-
ply a vector of these perceptrons’ outputs.

Finally, the edge condition determines what happens
at the edges of an image, when the input does not fully
overlap with the filter size. For example, with a filter size
of 2s+1, the behavior for the first and last s samples of the
input is poorly defined. It is an option to simply discard
these cases, but this results in a layer size that is dependent
on the filter size. Another option is to pad the input by
half the filter size (rounded down) and then discard the

5In our case, the x and y coordinates of the images are of the
same modality (a single pixel in one direction is the same real-world
distance as a single pixel in another dimension), and it makes no
sense to have different strides for the two dimensions.

17

violating cases, which does ensure the convolutional layer
to be of the same size as the input layer. In this work we
have chosen to apply zero-padding, but we believe that it
does not matter too much, as our images are mostly black
around the edges anyway.

Appendix A.3. Pooling layers

A pooling layer is similar in structure to a convolutional
layer, but instead of consisting of limited perceptrons, it
consists of neurons that perform a non-linear function.
They are often placed immediately after a convolutional
layer, to introduce a non-linearity that allows the network
to learn more complex structures than it would with just
convolutional and dense layers [22].

The most common example is the max-pooling layer. It
has the same structure as the convolutional layer, taking as
its input only the surrounding neurons from the previous
layer, and has a filter size and stride as well. However,
instead of multiplying the input by weights and summing,
it simply outputs the maximum value of each depth slice
from the inputs.

By taking the maximum value over a spatial window,
we perform a dimensionality reduction (assuming a stride
larger than 1). The reason the maximum value is used is
that this works well with the convolution operation: con-
volution overlaps 2 signals (image and kernel in this case)
and returns the inner product, so a high response at a lo-
cation means that the image resembles the kernel at that
location. By taking the maximum, we achieve a sense of
how much that portion of the image resembles each kernel
(each depth slice).

Appendix A.4. Network Design and Hyperparameter Op-
timization

Conventional wisdom in recent image processing tech-
niques dictates a set of design patterns for convolutional
neural network architectures that have been shown to work
well. Specifically, the most common pattern is to interlace
convolutional layers with max-pooling layers. The input
is fed through some number of these interlaced layers suc-
cessively before being passed into some number of dense
layers, before being passed to the output.

The issue with designing and optimizing these networks
is that the search space is infinite, and while there exists
a lot of knowledge on what does and does not work for
common datasets and tasks, still much research has to be
done on why these are good design patterns [22].

Commonly, networks are used that have been shown to
work well on difficult datasets (such as ImageNet), often
pre-trained to reduce the time it takes to train on the new
dataset, but the “no free lunch” theorem [28] dictates that
there cannot be a single architecture that works best on
all different tasks and datasets.

Appendix B. ROC and PR curves

Figures B.1, B.2, B.3, and B.4 show the ROC and PR
curves for our proposed CNN, for classification on single
images and entire pipes, with a plot for each defect type,
and the areas under the curve (AUROC or AUPR) above
each plot.

18

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Fissure
AUROC = 0.892

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Surface Damage
AUROC = 0.883

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Intruding Connection
AUROC = 0.958

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Defective Connection
AUROC = 0.961

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Intruding Sealing Material
AUROC = 0.883

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Displaced Joint
AUROC = 0.900

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Porous Pipe
AUROC = 0.599

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Roots
AUROC = 0.909

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Attached Deposits
AUROC = 0.726

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Settled Deposits
AUROC = 0.772

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Ingress of Soil
AUROC = 0.919

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Infiltration
AUROC = 0.869

Figure B.1: ROC Curves for the proposed CNN when classifying single images.

19

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Fissure
AUPR = 0.138

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Surface Damage
AUPR = 0.083

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Intruding Connection
AUPR = 0.134

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Defective Connection
AUPR = 0.064

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Intruding Sealing Material
AUPR = 0.004

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Displaced Joint
AUPR = 0.072

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Porous Pipe
AUPR = 0.001

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Roots
AUPR = 0.049

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Attached Deposits
AUPR = 0.003

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Settled Deposits
AUPR = 0.002

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Ingress of Soil
AUPR = 0.070

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Infiltration
AUPR = 0.090

Figure B.2: Precision-Recall Curves for the proposed CNN when classifying single images.

20

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Fissure
AUROC = 0.703

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Surface Damage
AUROC = 0.545

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Intruding Connection
AUROC = 0.635

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Defective Connection
AUROC = 0.577

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Intruding Sealing Material
AUROC = 0.576

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Displaced Joint
AUROC = 0.638

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Porous Pipe
AUROC = 0.624

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Roots
AUROC = 0.648

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Attached Deposits
AUROC = 0.711

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Settled Deposits
AUROC = 0.612

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Ingress of Soil
AUROC = 0.598

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

Infiltration
AUROC = 0.645

Figure B.3: ROC Curves for the proposed CNN when classifying entire pipes.

21

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Fissure
AUPR = 0.487

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Surface Damage
AUPR = 0.603

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Intruding Connection
AUPR = 0.417

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Defective Connection
AUPR = 0.363

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Intruding Sealing Material
AUPR = 0.115

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Displaced Joint
AUPR = 0.654

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Porous Pipe
AUPR = 0.176

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Roots
AUPR = 0.311

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Attached Deposits
AUPR = 0.283

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Settled Deposits
AUPR = 0.169

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Ingress of Soil
AUPR = 0.437

0.0 0.5 1.0
Recall

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

isi
on

F1=0.2

F1=0.4

F1=0.6

F1=0.8

Infiltration
AUPR = 0.661

Figure B.4: Precision-Recall Curves for the proposed CNN when classifying entire pipes.

22

