
Unsupervised Anomaly Detection in Sewer Images
with a PCA-based Framework

Dirk Meijer
LIACS

Leiden University
Leiden, Netherlands

meijerdwj@liacs.leidenuniv.nl

Mitchell Kesteloo
LIACS

Leiden University
Leiden, Netherlands

Arno Knobbe
LIACS

Leiden University
Leiden, Netherlands

Abstract—We propose a simple framework for unsupervised
anomaly detection in aligned image sets, consisting of (i) feature
extraction, (ii) PCA decomposition and partial reconstruction,
and (iii) a dissimilarity measure comparing reconstructed to
extracted features. The basic principle is explained using artificial
datasets, and we show the effectiveness in a real-world scenario
pertaining to sewer inspection images. We investigate the effec-
tiveness of several features for this specific task, and show that
concatenating several features results in superior performance.
An analogy is also drawn to convolutional autoencoders and we
compare to some simplistic renditions of such networks to our
framework.

Anomaly detection, Principal component analysis, Convolu-
tional autoencoder, Unsupervised learning, Image processing,
Sewer asset management

I. INTRODUCTION

Sewer inspections need to be performed periodically to
ensure performance is up to standards. Image and video data
collected by a ‘pipe inspection gadget’ (PIG) is often manually
inspected, leading to subjective, inconsistent, and unreliable
deterioration and urgency ratings [1]. The SewerSense project
[2] aims to automate such sewer inspections.

Anomaly detection (sometimes outlier or novelty detection)
is a problem which aims to detect observations that do not
conform to an expected pattern. In the context of image
and video data, this relates to finding regions of interest
(ROIs), portions of the video or images that have a different
appearance and might be of interest. In the context of sewer
inspections, automatic ROI detection is the first step of the
SewerSense project. At a later stage in the project, classifica-
tion of the found regions into a taxonomy of defect classes
will be considered, but the intermediate result should aid the
inspection process in itself.

In this work, we propose a three-part framework to detect
anomalies in aligned image sets, such as static camera video or
photographs, or registered images. The framework is based on

This work is part of the Cooperation Programme TISCA (Technology
Innovation for Sewer Condition Assessment) with project number 15343,
which is (partly) financed by NWO domain TTW (the domain applied and
Engineering Sciences of the Netherlands Organisation for Scientific Research),
the RIONED Foundation, STOWA (Foundation for Applied Water Research)
and the Knowledge Program Urban Drainage (KPUD).

principal component decomposition and partial reconstruction,
but accounts for the fact that not all common elements in
image sets can be accounted for by a linear model (such
as PCA is) by first extracting possibly non-linear features
from the image sets. We also foray into the field of deep
learning and investigate the possibility of using convolutional
autoencoders (CAEs) to fill the role of several parts of the
framework.

We would like to emphasize that while this work originated
from the need to automatically process sewer pipe images,
no assumptions are made specific to this problem. The only
requirement is that the images in a set are aligned, so other
possible applications include video surveillance, autonomous
vehicles and medical image processing.

II. PRELIMINARIES

A. Principal Component Analysis

Principal Component Analysis (PCA) has been around for
over a century, after having been introduced in 1901 by Karl
Pearson [3]. It is a popular tool in statistics, data science and
many other scientific fields, used to reduce the dimensionality
of data to facilitate data exploration and the use of algorithms
that are sensitive to high dimensionality.

Given a dataset X, consisting of N observations with d
features each, we express this as an [N × d] matrix. When
using PCA for dimensionality reduction, a dimensionality θ ≤
d is chosen and X is projected on the first θ eigenvectors The
projected matrix P retains as much variance as is possible in θ
dimensions*. This allows researchers to view high-dimensional
data in two or three-dimensional plots, or employ algorithms
that are not designed for high-dimensional data.

B. Anomaly Detection

In this study, we approach anomaly detection as an un-
supervised learning problem. This means the algorithm will
learn the structure present in the data, with the caveat that
some parts of the data will not adhere to this structure.
These anomalies have to be detected without influencing the

*Barring non-linear embeddings



Algorithm 1: Anomaly Detection Framework
Input : Image set {I1, . . . , IN}
Input : Feature descriptors F : I→ Rd

Input : Number of principal components to use in reconstruction: θ
Input : Dissimilarity function D : Rd × Rd → R+

Initialize: Featurespace X = {x1, . . . ,xN} with xi ∈ Rd ∀i ∈ [1, N ]

Initialize: Featurespace P = {p1, . . . ,pN} with pi ∈ Rd ∀i ∈ [1, N ]

Initialize: Featurespace X̂ = {x̂1, . . . , x̂N} with x̂i ∈ Rd ∀i ∈ [1, N ]

1 xi ← F(Ii) ∀i ∈ [1, N ] // Extract per-image features

2 P ← PCA(X) // Decompose and project X onto its PCs

3 [pi]j ← 0 ∀i ∈ [1, N ] ∀j ∈ (θ, d] // Discard contribution of low variance PCs

4 X̂ ← PCA−1(P) // Reconstruct to original feature space

5 Ai ← D (xi, x̂i) ∀i ∈ [1, N ] // Calculate per-image anomaly score

Output : Anomaly scores {A1, . . . , An}

learning of the structure too much. This draws some parallels
to one-class classification and clustering. The difference in
one-class classification is the assumption that the dataset used
to learn the structure will be pure, that is to say, it does not
contain the anomalies that are to be detected after learning
[4]. The difference with clustering is that clustering cares
about different classes of objects that may be present in the
dataset, while anomaly detection only looks for the anomalies,
regarding all non-anomalous objects as a single background
class. Anomalies might also be single instances, meaning they
would not be considered as clusters.

Anomaly detection is a large field, but an especially well-
written and extensive overview of methods, empirical issues,
and literature is given in [5]. While using PCA to detect
anomalies is not a new idea (see [6] for example), to the
authors’ best knowledge the application to image data is novel.

III. FRAMEWORK

We propose a simple three-part framework to detect local
anomalies in aligned image sets and videos, as shown in figure
1 and described in more detail in algorithm 1. The three parts
are: (i) feature descriptors, (ii) PCA decomposition and partial
reconstruction, (iii) a dissimilarity function to compare the
PCA reconstructed feature to the extracted features.

a) Feature Descriptors: The choice of feature descriptor
depends on the type of anomaly that has to be detected
in the images. For example, to detect abnormal texture, we
might use a feature that is known to work well in texture
classification such as wavelet responses [7]. Or to detect
motion in otherwise static camera images, we might calculate
the difference between a frame and the previous frame at each
position. The simplest choice is an identity function, i.e. the
features are the original pixels in the image.

The reason for using feature descriptors instead of simply
the images themselves stems from the fact that PCA is a
linear model, and the resulting principal components will be

Input: Image set

Feature Descriptors

Principal Component Analysis

Decomposition

Partial Reconstruction

Dissimilarity Function

Output: Anomaly score
Fig. 1. The proposed three-part anomaly detection framework.

combined linearly to reconstruct each image. Extracted fea-
tures, unlike the images they came from, may have invariances
to transformations that makes them more suited to compare
images within a certain set than the raw pixel values would.

A feature can be used to describe an entire image, a specific
location, or portions of an image, depending on the descriptor
used. This determines how ‘localized’ the anomaly detection
is. For example, we might calculate a locally windowed
greyscale histogram, resulting in as many feature vectors as
we have windows for each image in the set. We might want
to detect entire images as being anomalous, or we might
want to focus on specific regions within the image. When
using localized features, we have the option to either treat
all resulting feature vectors as if they came from the different



images (treating each window location as an image in itself) or
perform the framework for each window location individually.

b) PCA Decomposition and Partial Reconstruction:
The core of this approach is PCA decomposition and partial
reconstruction. The rationale is as follows: Common structure
within the image set will account for a large amount of the
variance present in the set. By decomposing the feature vectors
into principal components and discarding components that
represent less occurring variations before performing partial
reconstruction, we are using PCA akin to a trained image
smoother, which keeps common and discards uncommon
structure.

This step requires a parameter θ, the number of principal
components used for reconstruction. This parameter corre-
sponds roughly to a bias/variance trade-off. A very high θ
might result in overfitting on the training set as the difference
between original and reconstructed feature vectors might con-
tain mostly noise, and processing an image that the method
was not trained on would not work well. A very low θ means
the method relies more on deviations from the mean feature
vector, and less on the deviations it might learn from the
training set. It is also possible to replace this abstract parameter
θ with a more interpretable concept by choosing a percentage
of explained variance that the model should learn, and setting
θ to the lowest number of principal components that explain
at least that amount of variance.

c) Dissimilarity Function: To determine whether some-
thing is or isn’t an outlier, the decomposed and reconstructed
feature vector is compared to the extracted local feature
vector by means of some dissimilarity function. This might
be Euclidean distance, (one minus) a normalized Pearson
correlation, or however the chosen feature descriptors are
usually matched in other applications. It should be noted that
PCA minimizes the mean squared reconstruction error, so this
is also minimized for the anomalies we want to detect. It can
be any function D(f1, f2) that compares two feature vectors
f1 and f2, with only the restrictions that D(f1, f1) = 0, the
dissimilarity of a feature vector to itself is zero, and D ≥ 0
for all feature vectors.

We call the dissimilarity of the feature vector to its partial
reconstruction the anomaly score. This anomaly score can
then be thresholded to determine whether each feature vector
represents an anomalous image or region.

A. Proof of Concept

To illustrate our method, we look at the MNIST refer-
ence dataset [8], consisting of 70,000 handwritten digits in
greyscale images of dimensions [28× 28] We use the identity
function as feature descriptor, so that the feature vector is
identical to the pixel vector. This means our feature matrices
are shaped [70000×784]. When we apply PCA to the MNIST
dataset, we obtain 784 principal components, which we can
reshape into [28×28] images for visual inspection (also known
as eigenimages), as shown in figure 2 for the first 9 principal
components.

Fig. 2. The mean values (left) and first 9 principal components of the MNIST
dataset. (Greyscale ranges have been rescaled for maximum visibility.)

Now when we project an image onto the basis spanned
by the principal components, we express the image as a
linear combination of the eigenimages. Since the eigenimages
are sorted in order of decreasing explained variance in, an
image that is similar to the images in the set (in this case:
also a handwritten digit, for example) is expected to have a
larger (absolute) projected component onto earlier principal
components (higher eigenvalues), than onto later principal
components (lower eigenvalues).

0.063 0.032 0.079 0.059 0.094 0.189 0.098 0.168 0.115 0.117

Fig. 3. Sample images from the MNIST and CIFAR-10 datasets (top row) are
reconstructed with the first 50 principal components after PCA was trained
on 70,000 MNIST images and 1,000 CIFAR-10 images (middle row) and the
difference images between the original and the reconstructions (bottom row).
Below each difference image is the mean absolute value, which is used as the
anomaly score.

Now what happens when our dataset contains anomalies?
To illustrate, we add the first 1,000 images of the CIFAR-10
dataset of natural images [9] to the MNIST dataset†. These
images are very different from the digits in the MNIST set, and
since there are so few of them compared to the total size of the
dataset, they can be considered anomalies. We train PCA on
the combined dataset and then recreate all images using only
the first 50 principal components. We show the reconstruction
of some sample images in figure 3. It can be seen here that
the images from the CIFAR-10 set reconstruct poorly at the
edges, which makes sense as 98.5% of the images are from
the MNIST dataset, which does not contain any structure on
the edges of the images. As a result, the difference images
contain more structure at the edges and the CIFAR-10 images
will be easier to distinguish from the MNIST images with our
dissimilarity function.

As dissimilarity function, we take the mean absolute value
of the pixels in the difference images, which gives us an
anomaly score for each image in the set, which is on average
going to be higher for images from the CIFAR-10 dataset
than images from the MNIST dataset (see for example the
anomaly scores of the example images in figure 3). We can
now predict which images are anomalies by thresholding the
anomaly score.

†The images from CIFAR-10 are converted to greyscale and cropped to
[28× 28] pixels to conform to the images in the MNIST set.



This illustrates the basic principle of the framework: the
reconstruction error with a limited number of principal com-
ponents can find anomalies in an image set of otherwise similar
appearance. Although no feature descriptors were used for this
simple example, the need for this will become clear in the next
chapter.

IV. APPLICATION IN SEWER PIPE IMAGES

Dutch sewer engineering company vandervalk+degroot has
provided us with a dataset of images from a front-facing
camera on a PIG (pipe inspection gadget), from ten differ-
ent streets within different municipalities in the Netherlands.
These images are already spatially aligned, as the inspector has
aligned the camera to the center of the pipe before starting.
The images contain no labels or annotations though, so a
method of verifying that the unsupervised method correctly
finds anomalies is required. To this end, we selected two
different subsets that are somewhat representative of all the
sewer pipes from the different municipalities present in the
datasets and hand-labeled 22 images from these sets.

The two subsets correspond to two different types of pipe:
(1) smooth concrete and (2) more rough and textured agglom-
erate. Figure 4 shows an example of both. Henceforth, we will
refer to these two image sets as ‘smooth’ and ‘coarse’. The
image sets contain 684 and 698 images respectively.

Fig. 4. Sample images from the two labeled datasets: on the left the more
smooth concrete pipe, on the right the more roughly textured agglomerate.

The images are processed by the framework on a per-street
basis. The reason for this is that the material used varies
for different municipalities and date of installation, as will
the effects of age. When using images from a single street,
we can be reasonably certain that all images in such a set
are of similar appearance, which means that anomalies are
more easily detected, because we do not have to account for
a possible multimodal distribution in appearance.

The images were divided into 324 patches of [40×40] pixels
in the regions of the image that are in the focused portion of
the images. Each patch in the 22 validation images was labeled
as ‘anomaly’ or ‘normal’, in the context of the rest of the pipe.
This includes both actual defects, such as discoloration as a
result of leakage, as well as physical features that are simply
less common than others, such as pipe joints and refuse.

All the images in the sets from which the labeled images
originate are divided into the same 324 patches as the labeled
images, and for each patch location features are extracted and
PCA is applied to the feature vectors at a specific location.
This means the framework is applied 324 times and each
patch location across the images is treated as a separate image
set. We construct an ROC curve by thresholding the anomaly
scores at various levels and obtaining true and false positive
rates for our labeled validation images. We report the area
under the ROC curve (AUROC) as a measure of how well the
resulting anomaly score performs.

Note that the parameter θ, the cutoff value for the number
of principal components to use in reconstruction, was chosen
to maximize the AUROC. In our experiments, we found
that the optimal value for θ corresponds to approximately
99% explained variance for the smooth image set and 95%
explained variance for the coarse image set.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC Curve, smooth, pixels (AUC = 0.942)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC Curve, coarse, pixels (AUC = 0.774)

Fig. 5. ROC curves we obtain from the anomaly detection framework on our
manually labeled validation set, using pixels as features to be analyzed by
PCA. On the left the smooth dataset, on the right the coarse dataset.

When using pixels as features and the mean absolute dif-
ference as a dissimilarity measure, we obtain results as shown
in figure 5. The AUROC for the smooth set is 0.942, high
enough to be of use, however, the AUROC for the coarse set,
0.774, is quite low. This means that if this method were to
see use, human operators would have to sift through a large
amount of false positives if the system were calibrated to an
acceptable true positive rate.

The reason the framework performs less well on the coarse
set when using pixels as features, is the texture present in the
surface of the pipe in those images. The variance between
pixel values is far greater than it is in the smooth set, where
the entire pipe is more or less a single color, and as a result
the image are difficult to capture in a linear model such as
PCA.

A. Feature Extraction

To alleviate this issue, we extract features that we hope
are more robust to textured images. The feature vectors are
then decomposed, reconstructed and compared in the same
way that the images would be, as shown in the framework in
figure 1. In this section, we propose five higher-level features.
An overview of each features’ invariances is given in table I.



TABLE I
OVERVIEW OF FEATURE EXTRACTORS INVARIANCES AND TYPICAL USES

Feature Invariances
Pixel Values None
Color Histogram Translation, rotation,

scaling
Fourier Transform Translation‡

Histogram of Oriented Gradients None
Local Binary Patterns Translation, rotation
Homogeneous Texture Descriptor Translation, rotation

1) Color Histograms: To illustrate the effectiveness of
feature extraction, we choose a simplistic feature: a histogram
of the pixel values. The 1600 values in each color channel of
a patch are binned into 20 equally sized bins and concatenated
to form a feature vector of length 60. These (in comparison)
small vectors are decomposed into principal components and
reconstructed with fewer than 60 principal components. The
histogram is compared to the reconstructed histogram again by
mean absolute difference. We see a slight improvement when
using the histograms on the coarse set, an AUROC of 0.790,
whereas performance on the smooth set is slightly worse with
an AUROC of 0.942.

2) Fourier Transform: We perform a 2-dimensional Fourier
transform on the [40 × 40] image patches, obtaining the
frequency representation of the image patches. We discard the
phase component by taking the absolute value and discard
half the frequency plane because of symmetry. Again we
decompose and try to reconstruct the feature vector, using the
mean absolute difference as dissimilarity measure. The Fourier
transform does not provide an improvement over using the
pixel values, as we obtain an AUROC of 0.928 on the smooth
set and 0.715 on the coarse set.

3) Histogram of Oriented Gradients: Often abbreviated as
HOG, histograms of oriented gradients [10] describe an image
by determining gradient directions at each pixel location, and
binning these locally into histograms over a patch of specified
size. It is often used for object recognition. It seems that this
feature does not suit our purpose too well, as the AUROC for
the smooth set becomes 0.886 and for the coarse set becomes
0.588. This can be explained by the fact that this feature is
meant for object detection, and our images contain mostly
texture.

4) Local Binary Patterns: Local binary patterns are a
feature used to describe points as being edges or corners [11].
Each pixel is compared to its neighboring n pixels (usually
n = 8) and for each of these neighbors, it assign a 1 or 0
depending on whether the pixel has a higher value than that
particular neighbor. The resulting 8-bit numbers are locally
binned to summarize the texture of a cell as containing corners,
edges, or otherwise. The concatenated histograms are used as
a feature vector. We obtain AUROCs of 0.865 for the smooth
set and 0.705 for the coarse set.

‡After discarding phase component

5) Homogeneous Texture Descriptor: Part of the MPEG-
7 multimedia description standard, homogeneous texture de-
scriptors are shown to perform well on image retrieval tasks,
even for images with much texture [12]. Simply put, the HTD
features are comprised of (logarithmically scaled) mean values
and standard deviations of Gabor wavelet responses.

B. Concatenating Feature Vectors

One of the strengths of the framework is that we can con-
catenate multiple feature vectors and the PCA reconstruction
will still function identically. This allows us to combine the
strengths of multiple feature types, and even combine these
with the raw pixel values if we wish to do so.

After examining every possible permutation of the features
previously described, we found that excluding the HOG and
Fourier transform from the feature vector gave the best result
on both image sets. Figure 6 shows the resulting ROC curves
when we use the other high-level features described in this
section, as well as the raw pixel values, giving us the highest
AUROCs so far, 0.950 for the smooth set and 0.818 for the
coarse set.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC Curve, smooth, combined (AUC = 0.950)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC Curve, coarse, combined (AUC = 0.818)

Fig. 6. ROC curves from the anomaly detection framework on the validation
set, using both pixel values and the high-level features described in this section
(except for HOG and Fourier transform) combined as features to be analyzed
by PCA.

V. CONVOLUTIONAL AUTOENCODER

An autoencoder is a neural network that tries to learn
the identity function [13], and a convolutional autoencoder
combines this with image filter learning. Analogous to our
framework, this means we can learn the feature representation,
perform non-linear dimensionality reduction (replacing the
PCA) and reconstruct the input images. As we train this
network on an image set, we should be similarly able to use
it to detect anomalous regions by inspecting the difference
image.

We designed a convolutional autoencoder consisting of:
• Input layer: [1040× 1040] resolution
• Convolutional layer 1: 10 [20× 20] filters, stride [10× 10]
• Pooling layer 1: [2× 2] max pooling, stride [2× 2]
• Convolutional layer 2: 10 [20× 20] filters, stride [10× 10]
• Pooling layer 2: [2× 2] max pooling, stride [2× 2]
• Autoencoder: 1690→ 845→ 422→ 845→ 1690 units
• Unpooling layer 1: uniform, [2× 2]
• Deconvolutional layer 1: Weights shared Conv. layer 2



• Unpooling layer 2: uniform, [2× 2]
• Deconvolutional layer 2: Weights shared Conv. layer 1
• Output layer: [1040× 1040] resolution

Using this network, trained on the same image sets, we
obtained the following results: an AUROC of 0.946 on the
smooth set and 0.714 on the coarse set, figure 7 shows the
ROC curves. The results on the smooth set are rather similar
to those obtained by the PCA framework, the AUROC results
on the coarse set are noticeably worse.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC Curve, smooth, CAE (AUC = 0.946)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
ROC Curve, coarse, CAE (AUC = 0.714)

Fig. 7. ROC curves from convolutional autoencoder.

One niche where the convolutional autoencoder would out-
perform the PCA-based method is when we cannot afford to
miss any potential defects: we can see from comparing the
ROC curves that the convolutional autoencoder reaches a true
positive rate of 1.0 at a lower false positive rate than the
PCA-based method. Overall performance is still expected to
be worse, as indicated by the AUROC.

We expect that the reason for this reduced performance is
the reconstruction of the full images. In the PCA framework,
we are extracting features, decomposing and reconstruction
these features, and comparing the reconstruction to the ex-
tracted features. In the convolutional autoencoder, we try to
reconstruct the image itself out of necessity, as we do not
know what the features should be. But this means that the
reconstructed images are compared to the original images,
instead of the reconstructed features to the original features.

The fact that the convolutional autoencoder has to recon-
struct the original image, means it can’t learn features we
might describe as ‘texture descriptors,’ as these are inherently
rotation and translation independent, so reconstructing the
original pixel values from such features would be impossible.
But these are the types of features we expect (and confirmed
for the PCA-based approach) to perform well, so the compar-
ison is not entirely fair.

It should also be noted that the metaparameters of the
network are far more difficult to optimize than the parameter
θ our framework relies on, and a network better designed for
this specific task may perform better.

VI. SUMMARY

We have proposed a framework for unsupervised anomaly
detection in aligned image sets. Table II summarizes the
results obtained by the different variants. We see that while

raw pixel values perform quite well on the ‘smooth’ dataset,
improvement can be made by combining different feature
descriptors. For the ‘coarse’ dataset, the difference is larger,
drastic improvements are made by combining features.

TABLE II
RESULTS FOR THE METHODS AND DATASETS DESCRIBED IN THIS WORK.

AUROC
Feature type smooth coarse

Pixels 0.942 0.774
Color Histogram 0.942 0.790

Fourier Transform 0.928 0.715
Histogram of Oriented Gradients 0.886 0.588

Local Binary Patterns 0.865 0.705
Homogeneous Texture Descriptor 0.941 0.785

Pixels + Histogram + LBP + HTD 0.950 0.818
Convolutional Autoencoder 0.946 0.714

We conclude that our PCA-based approach, which could
be considered a more ‘traditional’ statistical approach to
computer vision using combinations of hand-crafted features,
outperforms the more ‘modern’ convolutional autoencoder, but
we must also admit that the comparison is not entirely fair as
we are in one case reconstructing high-level features and in
the other case pixel values.

REFERENCES

[1] J. Dirksen, F. Clemens et al., “The consistency of visual sewer inspection
data,” Structure and Infrastructure Engineering, vol. 9, no. 3, pp. 214–
228, 2013.

[2] TISCA programme funded by NWO-TTW, “Sewersense – multi-sensor
condition assessment for sewer asset management,” 2016-2020.

[3] K. Pearson, “LIII. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

[4] M. David, “Tax. one-class classification; concept-learning in the absence
of counter-examples,” ASCI dissertation series, vol. 65, 2001.

[5] G. O. Campos, A. Zimek et al., “On the evaluation of unsupervised
outlier detection: measures, datasets, and an empirical study,” Data
Mining and Knowledge Discovery, vol. 30, no. 4, pp. 891–927, 2016.

[6] M.-L. Shyu, S.-C. Chen et al., “A novel anomaly detection scheme based
on principal component classifier,” MIAMI UNIV CORAL GABLES FL
DEPT OF ELECTRICAL AND COMPUTER ENGINEERING, Tech.
Rep., 2003.

[7] M. Unser, “Texture classification and segmentation using wavelet
frames,” IEEE Transactions on image processing, vol. 4, no. 11, pp.
1549–1560, 1995.

[8] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of
handwritten digits,” 1998.

[9] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009, https://www.cs.toronto.edu/∼kriz/cifar.html.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886–893.

[11] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern recognition, vol. 29, no. 1, pp. 51–59, 1996.

[12] Y. M. Ro, M. Kim et al., “MPEG-7 homogeneous texture descriptor,”
ETRI journal, vol. 23, no. 2, pp. 41–51, 2001.

[13] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural networks,
vol. 2, no. 1, pp. 53–58, 1989.


